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Abstract

We structurally estimate a directed search model of the housing market
with mortgages using microdata on home listings and home sales. Estimation
is complicated by the significant heterogeneity that even basic mortgages in-
troduce into the search model, but we exploit the insights of Menzio and Shi
(2010) to maintain tractability. The estimated model shows that, because of
search frictions, housing market conditions are significantly more responsive to
mortgage rates than suggested by reduced-form correlations of rates with house
prices. In response to a change in interest rates, buyer willingness to pay for
the typical home changes by more than twice as much as the average sale price.
In contrast, home construction and sales volumes are more rate sensitive than
average sale prices, as is true in the data.
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1 Introduction

Fluctuations in housing values have significant consequences for the economy because

they influence consumption decisions, residential investment, and financial stability.

It is therefore important to understand what drives housing market dynamics. A

growing literature has focused on the role of mortgage interest rates, which are a

natural factor to examine because most home purchases are financed with large,

fixed-rate loans. In addition, mortgage interest rates are a particularly important

factor to study because they are the primary channel through which monetary policy

will be transmitted to the housing market.

The empirical literature typically estimates the effect of interest rates on housing

valuations using reduced-form correlations of interest rates with house prices, identify-

ing causal effects either through monetary policy surprises or through discontinuities

in institutional rules. This literature generally finds quite modest effects of interest

rates on house prices, with estimates of the semi-elasticity (i.e. the percent house

price response to a 100 basis point interest rate shock) in the low to mid single dig-

its.1 These empirical findings have contributed to a view that monetary policy may

be a blunt tool for influencing house price fluctuations, and that macroprudential

policies might be better suited for addressing house price movements and financial

stability risks (see Bernanke (2010); Yellen (2014)).

There are a few reasons, however, to question this conclusion. First, a benchmark

asset market approach to housing valuation (Poterba (1984)), in which the costs of

renting and owning are equal in equilibrium, often implies a larger rate elasticity.

1Using variation in mortgage rates driven by conforming loan limit rules, Adelino et al. (2012)
estimate semi-elasticities ranging from 1 to 9, depending on the time period and the interest rate
differential between jumbo and conforming loans. Estimating a VAR model, Del Negro and Otrok
(2007) show a semi-elasticity of about 4. More recently, Davis et al. (2018) estimate a semi-elasticity
of 3.4 using variation caused by an unexpected change in mortgage premiums charged by the Federal
Housing Administration. See Kuttner (2012) for a further review.
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Using the asset market approach, Himmelberg et al. (2005) show that the model-

implied semi-elasticity can be 20 under reasonable assumptions about key parameters,

such as the prevailing interest rate, expected rent price growth, and marginal tax

rate.2 Yet empirical estimates of the semi-elasticity range from 1 to 9. Thus, at first

glance, the theory seems to be at odds with the data.3

Second, in contrast to house prices, other housing market variables, such as ex-

isting home sales and new construction activity, are actually relatively interest rate

elastic. If interest rates have only a modest effect on the willingness to pay for hous-

ing—as the empirical relationship between house prices and rate changes seems to

suggest—then why are home sales and new construction, which should also be driven

by buyer valuations for housing, relatively rate elastic?4

In this paper, we show that the above facts can be rationalized by adding search

frictions, mortgages, and home construction to a standard asset market model. Our

estimated housing search model shows that interest rates do have sizable effects on

buyer valuations for housing. However, because of search frictions, the sales price

response significantly understates the latent valuation response. In particular, the

model predicts that an exogenous, unanticipated, and permanent 100 basis point

increase in mortgage interest rates will decrease buyer willingness to pay for the typical

home by 12 percent, but average sales price will fall by only 5 percent, consistent with

2Glaeser et al. (2012) also find semi-elasticities ranging from 10 to 20 in their baseline parame-
terizations of a user-cost model.

3In his summary of the empirical literature on the rate-elasticity of house prices, Kuttner (2012)
writes “the estimated effects are uniformly smaller than those implied by the conventional user cost
theory of house prices.” Glaeser et al. (2012) do show that when the user cost model is extended
to include refinancing and volatile interest rates, then the implied semi-elasticity can be reduced
substantially, though refinancing either needs to be costless or else subjective discount factors need
to be delinked from interest rates. Another strand of the literature shows that broader measures of
credit supply other than interest rates (i.e. collateral constraints) have larger effects on house prices
(see Favara and Imbs (2015); Maggio and Kermani (2015)).

4Among existing homeowners, DiMaggio et al. (forthcoming); Bhutta and Keys (2016) show that
changes in interest rates have sizable effects on consumption and equity extraction decisions, also
suggestive of a more sensitive response of home buyer demand to changes in rates.
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the magnitude of the price elasticity estimated in the existing literature. By contrast,

sales volumes and new construction permits are much more rate elastic than prices,

which is also true in the data. These are statements about constant-quality homes, so

the results are not driven by selection in the types of homes that are sold. Rather, the

results will be driven by the behavior of sellers and the tradeoffs they make between

list price and time on market.

The model is a directed search and matching model with mortgages and home

construction. A main contribution of our paper is that we estimate the model us-

ing detailed microdata on the list price choices and selling outcomes of individual

sellers from San Diego. In the model, buyers finance home purchases with long-

term, fixed-rate mortgages. Thus, homeowners endogenously become differentiated

by their interest rate and mortgage amount, which together determine the share of

per-period income that a homeowner must allocate to mortgage payment rather than

consumption. Homeowners occasionally receive a moving shock and become sellers.

The heterogeneous sellers direct their search for a buyer into one of many submarkets,

which are effectively list price levels for a given quality-level of housing. Builders, who

are differentiated by their construction cost, buy depreciated homes and optimally

choose when to start construction to replace the depreciated structure. Once con-

struction is completed, builders face a home selling problem with search frictions just

as sellers of existing homes do. The market for new and existing homes is integrated.

To understand the key intuition for our main results, note that the key tradeoff

faced by sellers in the model is that listing at a higher price will typically result in a

higher sale price but a longer time to sale. When there is a shock to buyer demand

(for example, from a decrease in interest rates), the tradeoff between sale price and

time-to-sell changes, and sellers will reoptimize on both dimensions. Therefore, not

all of the value of the shock gets capitalized into house prices, as some gets reflected
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in housing liquidity. The quantitative importance of the price versus sale hazard

clearing channel depends on parameter values such as search costs and the curvature

of the seller’s utility function with respect to price. By contrast, new construction

activity is more sensitive to interest rates because the building decision is influenced

by both expected price and expected time-to-sell, as builders also experience search

frictions when selling newly built homes.

Introducing even simple mortgage contracts and construction costs into a search

model introduces heterogeneity that is usually difficult to accommodate computation-

ally. However, because buyers can freely direct their search toward any submarket

in our model, expected buyer utility across submarkets will be equalized. Using the

insights of Menzio and Shi (2010, 2011), we show that such a condition allows us

to compute the equilibrium of our model without keeping track of the distributions

of agent heterogeneity, making the model easily solvable both in and out of steady

state. As a result, we are able to estimate the model without imposing the common

assumption that our data reflect a steady state, and we can simulate the complete

dynamics of our model in response to an interest rate shock from a realistic set of

initial conditions.

Related Literature

Our paper contributes to the large literature that uses search models to study the

housing market.5 Although the idea that economic shocks will not be fully reflected

in prices is not new to the search literature (i.e. it is emphasized for the housing

market in Diaz and Jerez (2013) and Head et al. (2014)) we are the first to try and

5See, for example, Burnside et al. (2016); Head et al. (2014); Piazzesi and Schneider (2009); Ngai
and Tenreyro (2014); Krainer (2001); Carrillo (2012); Albrecht et al. (2007); Novy-Marx (2009); Diaz
and Jerez (2013); Caplin and Leahy (2011); Genesove and Han (2012); Wheaton (1990); Arefeva
(2017); Moen et al. (2015); Guren (2018); Ngai and Sheedy (2016); Guren and McQuade (2013).
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quantify the effect of interest rates using detailed data on the list price choices and

selling outcomes of individual sellers. The advantage of using microdata is that we

are able to exploit the rich heterogeneity for informing the quantitative predictions

of the model, which lends credence to the final estimates. In addition, the micro data

allow us to directly observe key aspects of the model in the data, such as the trade-off

between price and time on market and the dependence of the seller’s choice of list

price on their outstanding loan amount. Other papers that estimate related models

of the home selling problem using micro-data on home listings include Merlo et al.

(2015); Carrillo (2012); Anenberg (2016); Horowitz (1992). Relative to these papers,

we are unique in that buyer valuations and prices are endogenously determined, and

that we incorporate new construction into our model.6

Another advantage of the structural approach is that it allows us to be explicit

about households’ expectations associated with the interest rate shock that is used

to measure the house price elasticity. In the data, interest rate changes can be an-

ticipated or unanticipated, and temporary or persistent. Such expectations can be

difficult to control for in the data but may matter for the size of the price response

(e.g. particularly if borrowers can refinance or mortgages are adjustable rate), which

complicates the interpretation of some of the reduced-form elasticities. In our main

results, we show that a small rate elasticity can be rationalized even when the rate

shock is unanticipated and permanent.

Methodologically, our paper is similar to Hedlund (2016) in that he also applies

the insights of Menzio and Shi (2010, 2011) to solve a directed search model of the

housing market both in and out of steady state. Hedlund (2016) also incorporates

mortgages and new construction into his search model, though his main focus is on

6Paciorek (2013); Murphy (2017) also model new construction, but they do not consider search
frictions as we do in this paper. Most of the macro housing search literature generally treats the
housing stock as fixed, and/or considers only steady states. Head et al. (2014) is a recent exception.
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foreclosures and the cyclical dynamics of the macroeconomy. In order to maintain

tractability given his rich general equilibrium structure, Hedlund (2016) incorporates

one-period-lived frictionless intermediaries that intermediate home sales. Our model

is more parsimonious compared to the one in Hedlund (2016), and so we do not need

to introduce intermediaries to maintain tractability. One consequence is that in our

model, the distribution of buy prices and sale prices are guaranteed to line up, net of

transaction fees, thus giving a clearer interpretation for how to match micro model

moments to the data. Our method for identifying key model objects such as the sale

hazard as a function of list price is similar to Guren (2018). Guren (2018) focuses

on identifying the concavity of the sale hazard function to show how this can lead to

house price momentum. Many of the insights in that paper are also replicated in our

model.

Finally, we contribute to the literature on hedonic valuation that builds off the

seminal work of Rosen (1974); Bayer et al. (2007); Berry et al. (1995); Bajari and

Benkard (2005). The insight of this literature is that consumer preferences over

product attributes may be inferred from the pricing of those attributes and from

consumers’ product choices. This literature has been applied to housing in order to

study households’ willingness-to-pay for local amenities such as school quality, crime,

and pollution.7 Our contribution to this literature is to provide a framework for

studying both the liquidity and the price response to a change in amenities. While

our paper focuses on interest rates, our model could be used to obtain more accurate

estimates of willingness to pay for a more general set of amenities, in the presence of

search frictions.

7See, for example, Bayer et al. (2016); Bishop and Murphy (2011); Caetano (2012), Ouazad and
Rancière (2013); Kung and Mastromonaco (2015)
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2 Motivating Empirical Facts

In this section, we show that home sales and home construction appear to be more

rate elastic than home prices. We provide evidence that sales and construction are

rate elastic mainly because homebuyer demand is rate elastic. Then, in the remainder

of the paper, we turn to a model with search frictions to help us better understand

these relationships.

2.1 General Patterns

We examine the correlation between national 30 year fixed rate mortgage rates and

several housing market variables of interest. We estimate linear regressions of the

following form:

log(yt)− log(yt−4) = α0 + α1(rt−1 − rt−5) + α2(Xt−1 −Xt−5) + εt (1)

where y is the housing market variable of interest, r is the mortgage rate (measured

in percentage points), X are other covariates and t indexes the quarter-year. We lag

the right hand side variables by one quarter to reflect the fact that housing market

variables are measured with some delay. We have over 30 years of data, though the

precise number of observations varies with the outcome variable. The mortgage rate is

the average quarterly rate in percentage points as reported in the Freddie Mac primary

mortgage market survey. For our main results, we include the national unemployment

rate in X. α1 represents the semi-elasticity of y with respect to mortgage rates–that

is, the percentage point change in y in response to a 1 percentage point increase in

mortgage rates.

Changes in interest rates in equation (1) are likely endogenous, and so the estimate
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of α1 should not be interpreted as a causal effect. Rather, the relative estimates of

α1 across outcome variables are simply meant to illustrate the different correlations

between changes in rates and outcome variables of interest.

Column 1 of Table 3 displays results for real quality-adjusted house prices, as

measured by the Corelogic repeat sales index. The estimated semi-elasticity has the

expected sign (negative), but is small in absolute value. Column 2 shows the semi-

elasticity when total sales volume of new and existing homes, as reported by the

National Association of Realtors, is included as the outcome variable. The estimated

semi-elasticity is -8.4, suggesting that sales volume is more rate elastic than house

prices. When the number of homes available for sale is divided by sales volume—often

referred to as “months supply” in the industry—the estimated semi-elasticity, re-

ported in column 3, is a bit higher in absolute value. This result suggests that the

rate elasticity of sales volume is affected by changes in buyer demand—i.e. through

homes selling faster or slower—and not just by changes in the number of sellers

putting homes on the market. This point is reinforced by column 4, which shows that

changes in the number of new listings coming onto the market is actually slightly

positively associated with changes in mortgage rates.8

Most of the existing literature that estimates the effect of interest rates on housing

valuation analyzes only prices, and would miss the liquidity response that is illustrated

by the results in columns 2-4. The conceptual framework behind the existing empirical

specifications is typically a frictionless asset market approach, where changes to buyer

valuations due to rate changes would be fully reflected in price changes. But in such a

model there is no scope for homes to remain on the market unsold.9 In the Appendix,

8New listings is for the San Diego CBSA and comes from the CoreLogic listings data that we
use to estimate our model and describe below.

9For further details of the asset market approach to housing valuation, we refer the reader to
the presentation in Fuster and Zafar (2015); Glaeser et al. (2012); Kuttner (2012)
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we provide further evidence that 1) mortgage rates affect homebuyer demand and 2)

a shock to homebuyer demand from a shock to the mortgage rate is partly cleared

through the probability of sale, using an alternative dataset.

Column 5 shows the semi-elasticity when single-family building permits as re-

ported by the Census Bureau is included as the outcome variable in equation 1. The

estimated semi-elasticity is -11.5, suggesting that like sales volume, permits are more

rate elastic than house prices. Permits could be sensitive to rates for a couple of rea-

sons. First, rates could affect the demand for housing, which should affect the revenue

side of a builder’s profit function. Second, rates could affect the builder’s financing of

construction costs, which should affect the cost side of a builder’s profit function.10

To better understand the mechanism through which interest rates influence permit

activity, we include interest rates of shorter maturities on the right side of equation

1. The motivation for these additional specifications is that if the demand channel is

more important, then permits should be most sensitive to longer maturity rates, as

most borrowers finance home purchase with 30 year fixed rate mortgages. If the cost

channel is more important, than permits should be more sensitive to shorter-term

rates. Builders construct homes relatively quickly and so the short-term rate is more

relevant to the cost of financing housing construction. Column 6 show the results.

The rate elasticity of permits appears to be entirely driven by the 30 year mortgage

rate, suggesting that permits are rate elastic mainly because buyer demand is rate

elastic. Our model will therefore focus on this demand channel.

An elastic housing supply curve could help to explain why prices are not as sensi-

tive to rates as new construction.11 To explore this possibility, we split metropolitan

10In the small literature that structurally models the building decision and includes a role for
interest rates, interest rates typically affect the building decision through the demand channel. See
Paciorek (2013); Murphy (2017).

11It is not clear that an elastic housing supply curve could explain why existing home sales are
relatively rate elastic, however.
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areas into three groups of equal size based on the Saiz (2010) measure of housing sup-

ply elasticity. Table 2 shows results where we estimate the regressions shown in Table

1 separately by supply elasticity group. CBSA fixed effects are included. The results

are similar in both high and low housing supply elasticity metros suggesting that

elastic housing supply alone cannot rationalize the motivating facts that we present

in this section.

3 Model

Our approach is to take a standard asset market model and incorporate search, mort-

gages, and construction as parsimoniously as possible. As in the standard asset mar-

ket model, we abstract from certain aspects of the market such as endogenous rents,

mortgage prepayment/default, buyer heterogeneity, and borrowing constraints. By

endogenizing selling and construction decisions in addition to prices, we have predic-

tions for sales volume and construction activity, which are not present in the standard

model.

We consider a directed search model of a local housing market where there are

h = 1, 2 types of housing units (new and old). New homes are produced by builders

using undeveloped land, and old homes are held by existing homeowners. New homes

become old homes after one ownership spell, and old homes will sometimes depreciate

into undeveloped land.

Each period, some builders and some owners will become sellers. Sellers list their

houses at p = p1, . . . , pL possible price levels. Buyers will choose which type of house

(new or old) to search for, and at what list price level. We define a house type and

list price pair, (h, p) as a submarket.

Within submarkets, buyers meet sellers via a frictional matching process. Let
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θ = b/s be the ratio of buyers to sellers in the submarket, often referred to as market

tightness. Then, the probability that a buyer meets a seller is qb(θ) and the probability

that a seller meets a buyer is qs(θ) = θqb(θ). We assume that qs and qb are continuous,

that qb(0) = 1 and qs(0) = 0, and that qb is strictly decreasing while qs is strictly

increasing. In equilibrium, the basic tradeoff faced by the buyer is that searching at

higher list prices will typically result in a faster match, whereas the opposite is true

for sellers.

3.1 Buyers

Buyers are ex-ante homogeneous. In each period, they may freely enter or exit the

local housing market. Let V b(x) be the value function of entering the housing market

when the aggregate state of the economy is x. The aggregate state can take on x =

x1, . . . , xN possible values, and evolves according to a first order Markov transition

matrix Π. The aggregate state variable encapsulates variables in the economy which

affect the housing market, such as mortgage interest rates. Section 3.4 provides the

precise definition of x in the equilibrium of our model economy.

Let k be the present value of the buyer’s utility if he does not enter the housing

market. k can be thought of as the outside option of living somewhere else, or of

renting forever.12 In equilibrium,

V b(x) = k (2)

as buyers will freely enter the market until the point in which the marginal buyer is

indifferent between entry or exit.

Buyers enter the housing market as renters. The per-period cost to renting is rent.
12For exposition of the model, we treat k as a constant, but it could also be allowed to depend

on the aggregate state x. Alternatively, k itself could be an aggregate state variable contained in x.
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We assume that rental units come from a separate housing stock than owner-occupied

units, and are owned by absentee landlords. Buyers then decide which submarket (i.e.

house type and list price) to search in. In submarket (p, h), when the aggregate state

is x, the buyer meets a seller with probability qb(θ(p, h, x)).

After the buyer meets a seller, he discovers an idiosyncratic preference shock ε for

that particular house, which is drawn from Gh(ε). This preference shock captures the

reality that a buyers’ valuation is only fully revealed upon physically viewing the house

and helps to ensure that not all meetings lead to transactions, consistent with the

evidence shown in Genesove and Han (2012) that average viewings per transaction

are greater than one. The idiosyncratic preference shock is additive in utility and

is consumed at the time of purchase. This assumption simplifies our notation and

computation, but due to an exogenous moving assumption which is discussed below,

it is equivalent to a model in which the preference shock is additive and consumed

over the period of living in the house. After drawing the preference shock, the buyer

decides whether or not to purchase the house at the listed price p.13 If purchased, the

buyer becomes an owner and finances the home with a 100% LTV, interest-only, fixed-

rate loan that is paid off at the time of resale. This simplifies the analysis without

losing the key economic mechanisms of the interest rate affecting buyer valuation

through higher borrowing costs, and the mortgage balance affecting the sellers’ list

price vs. time-on-market tradeoff. We discuss further implications of this assumption,

including robustness, in the Appendix. Neither mortgage default nor short sales is

allowed. Instead, we model a utility cost to selling while under negative equity. The

interest rate r is exogenous and can take on one of r = r1, . . . , rN possible values.

An owner can be described by the price he purchased the house at, p, and the

13We abstract away from bargaining from the list price for computational reasons. The assump-
tion that houses sell at list price is a reasonable approximation as in the data, the average, median,
and modal transaction price is very close to the list price.
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interest rate on his loan r. For each owner, r will be equal to the prevailing market

interest rate at the time she purchased the home. Let V o(p, r, x) be the value function

of an owner when the aggregate state is x. A buyer searching at price p when the

interest rate is r and the aggregate state is x will therefore purchase if and only if:

V o(p, r, x) + ε ≥ k (3)

as k is the value of returning to the market as a buyer or of exiting the market.

We can now write the value function of being a buyer as:

V b(x) = u(y − rent)− cb + max
p,h

βEx′,ε|x,h

[
k + . . .

. . .+ qb(θ(p, h, x)) max
{

0, V o(p, r, x′) + ε− k
}]

(4)

u(y − rent) is the flow utility from consumption, where y is per-period income and

rent is the rental rate. cb is the cost of searching the market as a buyer, and may be

thought of as the time investment of searching through listings and visiting homes.

Buyers choose which house type h and list price p to search at. The probability that

he meets a seller is qb(θ(p, h, x)), and if ε is high enough, he will purchase the house,

getting a surplus of V o(p, r, x′) + ε− k starting next period. Otherwise, he returns to

the market as a buyer, or exits the market, both of which give present value k.14

14We have implicitly assumed that the price and mortgage are locked in at time t, when the
search decision is being made, even though the buyer does not start becoming an owner until time
t+ 1. This is realistic for our empirical implementation, where the time period is a month, as prices
and mortgage contracts are usually locked in a month or two in advance of the closing date.
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3.2 Owners

Owners stay in their homes until they receive a moving shock, which happens with

probability λ each period.15 Moving shocks are exogenous, and can be thought of

as representing events such as divorce or job change. If an owner does not receive

a moving shock, she simply consumes her income minus interest payments, y − rl,

where l is the loan amount, and moves on to the next period as an owner. Conditional

on receiving a moving shock, there is an additional probability α that the house

depreciates to undeveloped land. In this case, instead of becoming a seller, the owner

immediately receives a liquidation value pc for the depreciated home, pays off the

loan amount l, and transfers ownership of the unit to a builder. The terminal utility

for the owner in this situation is U(pc − l), where U is the utility function used to

evaluate net wealth at the time of a move.

Let V o(l, r, x) and V s(l, r, x) be the value functions of owners and sellers, respec-

tively. We can write:

V o(l, r, x) = u(y − rl) + βEx′|x

[
(1− λ)V o(l, r, x′) + . . .

. . .+ λ(1− α)V s(l, r, x′) + λαU(pc − l)
]

(5)

In words, owners make mortgage payments, consume, and receive housing div-

idends until they receive a moving shock.16 Upon receiving a shock, owners either

become sellers or receive a liquidation value for the home depending on the realization

of a depreciation shock. We now describe the sellers’ problem.
15Ngai and Sheedy (2016) consider a search model where moving is endogenous. If we allowed for

endogenous moving in our model, more sellers would likely decide to list their homes for sale when
interest rates fall, which would likely increase the sensitivity of sales volume to rate changes. These
extra listings would have no direct effect on prices because buyer entry is elastic in our model, though
there may be some indirect effect on prices due to selection on the types of sellers that transact.

16Recall that we account for the net present value of the entire housing dividend stream at the
time of purchase, so the housing dividend does not appear explicitly in the owner’s value function.
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3.3 Sellers

Sellers continue to consume their income minus mortgage payments each period. In

addition, they pay a per-period search cost cs, which can be interpreted as including

both the time investment of selling a home (listing, showing, etc) and the penalty for

not selling the home fast enough (as in the case of moving to a new job).

When an owner first becomes a seller, she chooses a list price to market her

home at. In subsequent periods, the seller receives the opportunity to change her

list price with probabilityρ.17 We incorporate this pricing friction to account for the

empirical reality that sellers adjust prices only infrequently (see, e.g., Guren (2018);

Merlo and Ortalo-Magne (2004)), perhaps due to menu costs, seller inattention, or

signaling considerations that might arise in a model where buyers are uncertain over

house quality. Our model abstracts from the particular mechanism through the single

parameter ρ. However, we will show below that our main results are essentially

unchanged when ρ = 1 and sellers can adjust prices each period.

Let V s(l, r, x) be the value function of a seller free to change her list price and

let W s(l, r, x, p) be the value function for a seller currently listing at price p. We can

write:

V s(l, r, x) = max
p
W s(l, r, x, p) (6)

and

W s(l, r, x, p) = u(y − rl)− cs + βEx′|x

[
κ(p, h, x)U(p− l) + . . .

. . .+ (1− κ(p, h, x))ρV s(l, r, x′) + . . .

. . .+ (1− κ(p, h, x))(1− ρ)W s(l, r, x′, p)
]

(7)

17In our model, only changes to the aggregate state will incentivize sellers to adjust list prices.
There is no duration dependence of list prices that might arise from learning or from a finite selling
horizon.
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Here, U(p− l) is the utility over net wealth at the time of a move and κ(p, h, x) is the

probability that the seller meets a willing buyer in submarket (p, h). The probability

that the seller meets a willing buyer is given by:

κ(p, h, x) = qs(θ(p, h, x))Ex′,ε|x,h

[
V o(p, r, x′) + ε− k ≥ 0

]
(8)

i.e. it is the probability that the seller meets a buyer with preference shock ε high

enough to warrant purchase of the home at price p. Since owners have old houses,

h = 2 in the seller’s problem.

3.4 Builders

Builders can be in three stages of development: 1) sitting on a plot of depreciated

land, deciding whether or not to begin development, 2) under construction, and 3)

ready to market a completed home. In the first stage, builders start with a plot of

land which they acquire for price pc from owners whose homes depreciate. They are

not required to begin development immediately. Rather, this is a decision they make

each period based on the aggregate state and on idiosyncratic shocks to startup cost.

In the second stage, when the builder has begun development, there is a probability

φ of completing development each period. When development is complete, builders

choose a list price to market the home at, much like sellers of existing homes. Builders

have heterogeneous construction costs C, which for simplicity we assume are paid at

the time of sale and are learned by builders once construction is completed. We also

assume that the price of land, pc, is paid by the builder at the time of sale.

Let V 1(x) be the value function of a builder sitting on an undeveloped plot of

land, let V 2(x) be the value function of a builder in development, and let V 3(C, x)

be the value function of a builder who is listing her property for sale. For builders

17



with undeveloped land, there is an additively separable, idiosyncratic cost η to begin

development each period. Denote the cdf of η as Fη. The builder’s value functions

are therefore given by:

V 1(x) = βEη,x′|x

[
max

{
0, V 2(x′)− η

}]
(9)

V 2(x) = βEC,x′|x

[
(1− φ)V 2(x) + φV 3(C, x′)

]
(10)

V 3(C, x) = max
p
W 3(C, x, p) (11)

W 3(C, x, p) = −cc + βEx′|x

[
κ(p, h, x)U(p− pc − C) + . . .

. . .+ (1− κ(p, h, x))ρV 3(C, x′) + . . .

. . .+ (1− κ(p, h, x))(1− ρ)W 3(C, x′, p)
]

(12)

Builders selling completed homes behave similarly to sellers of existing homes. In

(12), cc is the listing and marketing cost for developers.18 The probability of meeting

a willing buyer, κ(p, h, x), is the same as in (8). Since developers sell new homes,

h = 1 in equation (12).

3.5 Equilibrium and Discussion

An equilibrium in the housing market consists of value functions V o,W s, V 1, V 2,W 3,

and a market-tightness function θ that satisfies equations (2) thru (12). From the

value functions and market-tightness, we can derive all the decision rules for agents

18Requiring builders to make interest payments on construction costs while the home is for sale
in stage 3 would be an additional mechanism that would tend to favor a rate-elasticity of new
construction that is larger than the rate-elasticity of prices. We abstract from this for simplicity
and because the evidence in Section 2 suggests that the rate-elasticity of buyer demand drives the
rate-elasticity of building decisions in the data.
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in the economy, at any aggregate state. In the Appendix, we prove the existence of

an equilibrium using Brouwer’s fixed point theorem.

Even though buyers are ex-ante homogenous and there is only one type of mort-

gage contract in our model, mortgages and search endogenously generate significant

heterogeneity among homeowners and sellers with respect to outstanding loan amount

and mortgage rate. Rate heterogeneity arises because there is time-series variation in

the market interest rate, and existing homeowners have bought in at different times.

Time series variation in the aggregate state also generates loan amount heterogene-

ity. However, an additional generator of heterogeneity in loan amount is price dis-

persion—even within a model period where the aggregate state is fixed, loan amount

heterogeneity arises because multiple submarkets for a given house type are active in

equilibrium.

A special feature of our model is that the equilibrium value functions and market-

tightness do not depend on the distribution of agents already present in the economy,

nor on the transition dynamics of these distributions. Thus, x depends only on three

variables: income, rent, and the market interest rate. This is not a general feature

of equilibrium search models, but rather arises out of the indifference condition of

the buyers. To develop some intuition for why this is, let us suppose that a positive

number of buyers search in submarket (p, h) when the state is x. This implies that

(p, h) maximizes (4) in state x. Since V b(x) = k, we can rewrite (4) to give:

θ(p, h, x) = q−1
b

 (1− β)k − u(y − rent) + cb

βEx′,ε|x,h

[
max

{
0, V o(p, r, x′)− k + ε

}]
 (13)

This shows that, for any submarket in which buyers are willing to search, the equi-

librium market-tightness is a function only of p, h, x, and not of the distribution of

agents, as long as the owner value function only depends on p and x. In the Appendix,
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we prove that an equilibrium where V o depends only on p and x exists. Intuitively,

the market-tightness will vary over submarkets in such a way as to make buyers in-

different between searching at a higher list price with higher match probability, or a

lower list price with lower match probability. Multiple submarkets can be active at

any one time, though the buyers will be indifferent between them. Directed search is

important for this feature to hold: if search were undirected, buyers would have to

integrate over the distribution of seller types in order to make an entry decision.

Intuitively, the buyers’ indifference condition pins down an equilibrium tradeoff

curve between list price and sale probability. Heterogeneous sellers then sort along

this curve at their optimal list prices. Figure 1 illustrates a hypothetical tradeoff

curve between list price and sale hazard, and the optimal choice for a single seller.

An interest rate increase reduces buyer valuations at each list price, thus pushing the

tradeoff curve downwards, causing the same seller to choose a new combination of

optimal list price/sale hazard. Figure 1 shows that the new optimal choice of the

seller generally results in both a reduction in list price and sale probability.19 This

prediction is consistent with the empirical evidence documented above and shown in

the literature more generally that house prices and probability of sale comove strongly.

The structure of our model is closely related to the directed search models of

the labor market in Menzio and Shi (2010, 2011). Menzio and Shi were the first

to study the implications of indifference conditions in models of directed search. In

their model, firms face a free entry condition on job postings, which regulates the

market-tightness to depend only on the aggregate state, and not on the distribution

of worker-firm matches within the economy. This is the same role that the free entry

condition of buyers plays in our model.

19An exception is the special case where the slope of the tradeoff curve is invariant to changes
in interest rates. However, if the slope of the indifference curve changes, then we should observe a
change in price and sale probability even if the slope of the tradeoff curve does not.
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A consequence of dependence only on p, h, x is that the model becomes much more

tractable to solve, while still allowing for rich price and volume dynamics. Moreover,

the assumption of directed search is appropriate for housing markets: home buyers

certainly do not choose which listings to visit at random. The assumption of free

entry and exit of buyers is also reasonable for local housing markets, and we note

that k could depend on the aggregate state variable, thus allowing for a time-varying

indifference condition that could represent changes to the attractiveness of the local

market (i.e. through higher wages or amenities).

4 Estimation

4.1 Parametric Assumptions

For estimation, we make the following parametric assumptions. We assume that the

matching function is Cobb-Douglass with exponent γ so that the probability that a

buyer meets a seller is:

qb(θ) = min(1, Aθ−γ) (14)

and the probability that a seller meets a buyer is:

qs(θ) = min(1, Aθ1−γ) (15)

where A > 0 is a scaling parameter. We also assume that per period utility, u, is

CRRA with risk aversion parameter, σ:

u(c) = c1−σ

1− σ (16)
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We write the utility function over terminal wealth as:

U(w) = Bu(bw) (17)

where B and b are parameters to be estimated. This is a fairly flexible way to model

terminal utility over wealth, as it nests the situation in which final net wealth is

amortized over either a finite or infinite number of future periods. It also flexibly ac-

commodates other potential reasons for sellers having concave utility over net equity,

such as psychological loss aversion or downpayment requirements on future home pur-

chases. To accommodate negative values of wealth, which can occur when the seller

sells for a price below the mortgage balance, we allow the utility to become linear for

bw < 1.

We assume that the match quality draws, εh, for h = 1, 2 the idiosyncratic devel-

opment cost, η, and construction costs, C, are all iid and normally distributed with

means µh, µη, µC and standard deviations σh, ση, σC .

We assume that the buyer’s outside option of living somewhere else, k, is equal to

the expected value of renting forever:

k(x) = u(y − rent) + βEx′|xk(x′) (18)

This amounts to a normalization because the effect of k on buyer decisions is not

separately identifiable from the effect of their search cost, cb. For estimation, we

impose cb > 0 so that the utility associated with searching forever as a buyer is less

than k. Similarly, we impose lower bounds on cc, cs to ensure that sellers do not wish

to stay on the market forever as a seller.

We assume that a model period is one month. The aggregate state x includes

the market interest rate, rent, and income. We assume that agents expect that these
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three variables evolve according to a random walk with normally distributed errors.

The parameters of this process are calibrated using a procedure and data that we

discuss in the Appendix.

4.2 Data and Moments Used for Estimation

We estimate most of the parameters of the model by simulated method of moments,

while some of the parameters are set outside of estimation, as described in Table 3.

The following discussion describes the data and moments used for estimation while

the Appendix provides a discussion of how we choose the parameters that are set

outside of estimation.

Our main dataset is from Corelogic on homes listed for sale in the San Diego MSA.

For homes listed for sale, the dataset provides information on list prices, initial listing

date, and delisting date, among other variables. We observe whether the delisting

occurs because of a sale, or whether the delisting occurs because the seller chooses to

reverse her decision to market the home for sale. We also obtain a dataset recording

all sales transactions in San Diego dating back to 1988, provided by Dataquick. We

use the sales dataset to merge on the initial purchase price for each home listing

(assuming the home was purchased subsequent to 1988) based on a unique property

id. We also use the sales dataset to identify listings that are new construction. The

sales dataset has a flag for new construction sales, and so if a listing can be linked to

a recent new construction sale, we classify the listing as new construction.

We fit the model to a single cross section of data from the San Diego housing

market in 2001. We chose 2001 because our listings data begin in 2000, and we did

not want to choose a year during the housing boom or bust when market conditions,

as well as other factors that are beyond the scope of our model, were changing rapidly.
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Market conditions in 2001 were fairly stable. We include three sets of moments from

our data sample. The Appendix describes the weighting matrix that we use to weight

the moments in estimation.

The first set of moments are the empirical counterparts to κ(p, h, x), which is the

sale hazard for each list price, house type (new or old), and aggregate state. In the

model, homes are of constant quality, conditional on type. In the data, there are

lots of differences in home quality conditional on new or old, so in order to construct

empirical moments for κ(p, h, x) that reflect constant quality variation in the data,

we need a strategy for partialling both observed and unobserved house quality.20

To do this, we approximate the sale hazard function as a third order polynomial

of list price p, where the coefficients are flexible functions of h and x, but also of

observed house characteristics z and unobserved quality ε:

κ(p, h, x, z, ε) = g0(h, x, z) + g1(h, x, z)p+ g2(h, x, z)p2 + g3(h, x, z)p3 + ε (19)

To obtain constant-quality empirical moments for κ(p, h, x), we first estimate (19) us-

ing the full sample of listings (including homes that are eventually withdrawn without

sale) that are on the market between 2001-2003 in San Diego. Then, we plug in a

specific value for x (average mortgage rate, rent, and income in 2001), z (the sample

average) and ε = 0 to obtain predicted values for κ(p, h, x). In practice, we estimate

(19) using a linear probability model where the dependent variable is an indicator for

whether the listing observation results in a sale in a particular month.

The identification challenge here is that unobserved quality ε is likely correlated

20In order to be consistent with our model, we assume that all variation in sale hazard conditional
on list price, aggregate state, and observed quality is driven by unobserved housing quality. Variation
in price conditional on unobserved quality is due to differences in the characteristics of the seller. A
valid instrument will therefore be correlated with characteristics of the seller but uncorrelated with
unobserved house quality.
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with list price p. This would bias the slope of the sale hazard with respect to the list

price upwards. To see the intuition for the bias, consider Figure 2(a), which shows

the average sale hazard by list price for homes of similar observable quality in our San

Diego data. The sale hazard slopes down, so there is a tradeoff between price and sale

probability. But in the figure, homes with high list prices are likely a combination of

homes that are priced high, conditional on their home quality, and homes that are

of high unobserved quality, and are not necessarily priced high. The former type of

home would be associated with a low sale hazard, as the high price conditional on

quality will attract fewer buyers. The latter would not be since the house is priced

high simply because it is of higher quality. This biases the slope of the sale hazard

with respect to the list price toward zero.

To address this endogeneity, we follow the identification strategy of Guren (2018)

and instrument for p using MSA-level house price appreciation between the month

of initial purchase and the current period. This is a valid instrument as long as the

timing between purchase and resale is exogenous to unobserved house quality, because

it affects the seller’s choice of list price while being uncorrelated with unobserved

quality. Since we include listing year dummies, the identifying variation thus comes

from homeowners who are listing in the same period, but who bought in at different

market conditions. Guren (2018) provides a more general defense of the validity of

this instrument for estimating the relationship between list price and sale hazard.

We provide further details on the estimation of (19) in the Appendix. Figure 2(b)

shows our IV estimates and standard errors. The estimated sale hazard is downward

sloping, steeper than the slope implied by Figure 2(a), and is somewhat concave.

These three findings are qualitatively consistent with the estimates in Guren (2018).

We estimate that sellers are less willing to tradeoff a lower sale hazard for a higher

price than Guren (2018), which may partly reflect differences in our sample years and
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metro areas.

The second set of moments is the empirical counterpart to the list price policy

function, ps(l, r, x), for existing homes. This is the seller’s optimal list price condi-

tional on the seller’s loan amount and outstanding interest rate. In accordance with

our model, we use the previous purchase price of the home as the loan amount and

the average mortgage rate in the month of initial home purchase as the outstand-

ing interest rate, r.21 In order to isolate constant-quality variation in the data, we

approximate the list price policy function with a third degree polynomial in l, as

above:

ps(l, r, x, z, ε) = ψ0(r, x, z) + ψ1(r, x, z)l + ψ2(r, x, z)l2 + ψ3(r, x, z)l3 + ε (20)

and evaluate (20) at the sample average of z, ε = 0, the sample average of r, and

2001 market conditions. As in the case of the sale hazard function, a potential

concern for the estimation of (20) is the correlation between ε and l. To see the

intuition for the bias, consider Figure 3(a), which shows the average list price choice

by purchase price for homes of similar observable quality in our San Diego data.

The list price is increasing in the purchase price. But part of this positive slope

may reflect the fact that homes that were purchased at higher (lower) prices are of

higher (lower) unobserved quality, and thus will naturally have higher (or lower) list

prices. Unobserved quality will tend to bias the slope of the empirical list price policy

function upwards.

We therefore instrument for l using house price appreciation between the month
21The use of purchase price as the measure of outstanding loan amount should bias us against

finding a relationship between the list price choice and loan amount in the data, and so it should
lower our estimate of seller risk aversion and thus weaken our main results. On the other hand, if
sellers evaluate sales prices relative to their purchase price because of anchoring as some evidence
suggests (Genesove and Mayer (2001); Bracke and Tenreyro (2016)), then the purchase price is
actually the appropriate variable to use.
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of initial purchase and two purchases ago. We again refer to the Appendix for further

details regarding the estimation of (20). Figure 3(b) shows our IV estimates and

standard errors. Our estimates show that the optimal list price is generally increasing

in the initial purchase price, but the rate at which it increases with purchase price is

less than the rate implied by the raw data shown in Figure 3(a).

We are not able to compute the empirical counterpart to the list price policy

function for new constructions, pc(C, x), because we do not observe the construction

costs of builders, C. Instead, we use the data to compute the mean and variance

of new construction list prices, adjusted for observable house quality differences, and

use those as estimation moments. The Appendix describes the details. The model

counterparts we use to these empirical moments are the mean and variance of pc(C, x),

integrated across the distribution of C.

4.3 Identification

The model is highly nonlinear and so almost all parameters affect all outcomes.

Nonetheless, here we we provide a discussion of the main features of the data that

identify each of our parameters.

The mean and variance of the normal match quality distribution are mainly iden-

tified by the mean and range of list prices for which the empirical sale hazards are

positive. For example, when there is more variance in match quality draws, sellers

will realize positive sale hazards at a larger range of list prices. The mean of the

match quality draw for existing homes relative to that for new construction is identi-

fied by the difference in the sale hazard for existing homes relative to the sale hazard

for new construction homes. In practice, we found that it was difficult to identify

both separate means and separate variances for new construction relative to existing
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homes, so we impose σ1 = σ2.

The exponent on the match function, γ, is mainly identified through the slope of

the sale hazard function. For example, when γ is low so that the elasticity of the

seller’s matching probability with respect to the market tightness is higher, then the

sale hazard function will be more sensitive to list price, as the market tightness varies

by list price. The buyer’s search cost, cb, mainly affects the level of the sale hazard.

For example, when buyer search cost is low, a larger number of buyers will find it

optimal to enter the housing market, which increases the sale hazard for each level of

list price. Since the scale parameter on the matching function, A, has a very similar

effect as cb, we set A = 0.5.

The parameters describing the terminal wealth utility function, b,B, σ, are identi-

fied mainly by the empirical list price policy function with respect to the outstanding

loan amount for existing homes. For example, without risk aversion (σ → 0), the list

price choice would not depend on loan amount. So the estimate of σ is very sensitive

to the slope of the list price policy function with respect to the loan amount. B is

partly identified by the level of the list price policy function. A low B would imply

that sellers do not place much weight on terminal wealth, and would incentivize a

low list price choice. Like B, b affects the relative importance of utility over terminal

wealth, but unlike B it also affects the level of wealth for which the utility function

switches from linear to concave in wealth. Simulations show that b is separately iden-

tified from B through more subtle differences in the moments. For example, changes

in B have a larger effect on the sale hazards for lower priced submarkets than b, while

the opposite is true for higher priced submarkets. Seller search cost, cs, is partly

identified through its effect on the minimum list price level that is associated with an

active submarket for existing homes. For example, if search costs are low, then sub-

markets with low list prices would not be active, because sellers would never choose
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to list at such prices as they would be patient enough to hold out for a higher price.

There are three parameters that affect the builders optimal behavior. The mean

and variance of constructions costs are mainly identified by the mean and variance

of list price choices for builders. Like cs, the search cost for builders, cc, is partly

identified through its effect on the minimum list price level that is associated with an

active submarket, but for new homes. In practice, we find that cc is also important

for helping us to fit the average builder list price observed in the data.

5 Parameter Estimates, Model Fit, and Discussion

Figure 4 shows the model fit for the sale hazards. For the model implied sale hazards,

the sale hazards associated with submarkets that are not active—either because no

seller would want to list in that submarket or because no buyer would want to visit

that submarket—are set to zero. Consistent with the data, we generate a down-

ward sloping and concave sale hazard, so there is a tradeoff between price and sale

probability. Sellers will differ in their optimal location on this tradeoff curve due to

heterogeneity in outstanding mortgage rate and outstanding loan amount. To see

why, note that outstanding mortgage rate and outstanding loan amount help de-

termine the sellers’ effective costs of staying on the market through u(y − rl) − cs.

Higher costs of staying on the market will tend to cause sellers to move to the left on

the tradeoff curve to a point that is associated withlower list prices and faster sale

hazards. Outstanding loan amount also affects the sellers marginal utility over price

because terminal utility is concave in p− l. A higher marginal utility of price favors

higher prices and slower sale hazards, all else equal.

Figure 5 shows the model fit for the list price policy function for existing homes.

As in the data, the model predicts that the optimal list price is generally increasing
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in the loan amount, but the slope is less than one. The estimated model generates

an increasing relationship between list price and loan amount because the terminal

wealth utility function is concave. If sellers were risk-neutral, then the list price would

not be increasing in the loan amount, conditional on house quality. List price does

not increase with loan amount at a 1-for-1 rate because the probability of sale is

decreasing in list price. Beyond a certain level of loan amount, however, the optimal

list price begins to flatten out, as in the data (see Figure 3). The reason is simply that

for high loan amounts, the optimal list price implied by risk aversion is associated

with a non-feasible submarket–i.e. it has a zero sale hazard.

Table 4 shows that we also match the other moments that we use for estimation

quite well. Table 3 presents our parameter estimates and standard errors. Following

the approach suggested by Lee and Wolpin (2010), standard errors are computed as

(G′WG)−1 where G is the matrix of derivatives of the moments with respect to the

parameters andW is a diagonal matrix where themth element of the diagonal is equal

to the inverse of the squared error associated with the mth moment at the estimated

parameter vector. Our estimate of the risk aversion parameter, σ, at around 2 is in

line with typical estimates of this parameter in CRRA utility functions. Our estimate

of γ implies that the contact elasticity with respect to the market tightness is larger

for buyers than it is for sellers.22 Our estimate of seller search costs, cs, implies

that the cost of staying on the market for an additional month for a typical seller is

$2040.23

22Our estimate of γ is lower than the estimate in Genesove and Han (2012), who estimate γ = 0.16
using a completely different approach. Genesove and Han (2012) infer seller contact hazards and the
buyer-seller ratio (i.e. market tightness) using the structure of a simple search model and annual
survey data on average buyer time-on-market, seller time-on-market, and number of homes visited
by buyers. The contact elasticity is then estimated by regressing the contact hazard and buyer-seller
ratio on changes in average MSA income, which is treated as a demand shifter.

23We compute the payment that leaves the seller indifferent between receiving the price p today
and staying on the market and receiving p next period. $2040 is the payment for a seller with
outstanding loan amount of $200k facing p = $300k.
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6 Model Simulations

In this section, we simulate the housing market response to an exogenous full per-

centage point increase in the mortgage rate. The shock is unexpected because a full

percentage point increase in the mortgage rate over one period is a very low proba-

bility event according to our calibration of agents’ expectations. Because our model

is easily solvable outside of steady state, we do not need to conduct our simulations

in steady state. We use the aggregate state and distributions of agents from the 2001

San Diego market as the initial conditions. We assume that the aggregate state, x,

remains constant for 24 periods (2 years). In period 25, we apply the permanent rate

shock. All parameter values are assumed to be invariant to the interest rate shock

but we re-solve the model equilibrium after the shock so that the equilibrium sale

hazards and list price policy functions adjust to the shock.

Figure 6 plots the response of average log sale prices to the interest rate increase

for existing homes. The shock reduces transaction prices by 5 percent over three

months. This elasticity is in line with the estimates in the literature discussed in

Section 1, which is reassuring since the interest rate elasticity of house prices is not

a moment that we target in estimation. From this result, we can conclude that a

modest semi-elasticity of house prices with respect to interest rates can be generated

simply from a model with search frictions.

The average sale price figure also shows that before and after the interest rate

shock, average log transacted house prices are growing at a persistent rate of about

2 percent per year. Interestingly, this growth does not arise from any persistent

fundamental process in the model. Rather, the growth arises due to a change in

the composition of sellers that are selling in each period as the model moves toward

steady state, which happens when all sellers have initial loan amounts that lead them
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to choose a list price that equals their loan amount. In a companion paper, we explore

in more detail the quantitative importance of search frictions and an upward sloping

list price policy function for generating house price momentum.

Figure 6 also shows that the price response significantly understates the response

in actual housing valuation. We define housing valuation as the price that buyers

would be willing to pay (i.e. makes their expected utility equal to k) if the match

rate between buyers and sellers in the economy was equal to 1. We still allow buyers

to decline to purchase if they receive a low ε draw. The details of how we compute

this “frictionless price” are provided in the Appendix. Figure 6 shows that housing

valuation declines by 11.5 percent in response to the 100 basis point rate shock. This

effect is over two times larger than the response in expected sale price.

Figure 6 plots the average transaction rate for existing homes. The transaction

rate declines by about 10 percentage points in response to the 100 basis point rate

shock. The transaction rate initially overshoots because when the rate shock is real-

ized and buyer demand falls, given the timing in our model, sellers have not adjusted

their list prices downward at all, causing the transaction rate to spike down. Once

sellers have the opportunity to adjust their price, the transaction rate moves back

up somewhat, but is still much lower than the average transaction rate in the lower

interest rate regime.

The bottom panel of Figure 6 shows the response of new construction prices, val-

uations, and permits. As was the case for existing homes, the average price response

for new construction homes is lower than the valuation response. The price elasticity

is somewhat higher for new constructions than existing homes, a result that we dis-

cuss more below. Finally, the figure shows that permits decline by about 15 percent

in response to the rate hike. To understand why permits are more rate elastic than

prices, first note that prices only reflect part of the elasticity of buyer demand to rate
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changes. The change in buyer demand gets reflected in sale hazards too. However, the

building decision is fully sensitive to the elasticity of buyer demand to rate changes

because both prices and sale hazards influence the building decision, as builders face

search frictions when selling their newly built homes.

Table 5 summarizes the key model implied rate elasticities reported in this section.

In the Appendix, we show robustness of our main results to a couple of model

assumptions. First, we consider the case of no sticky list prices (ρ = 1). The results

are very similar. The main difference relative to the baseline is that the response to

the rate change happens a bit more quickly. Second, we show results for the case of a

rate decrease, instead of a rate increase. The results are fairly symmetric. Finally, we

consider the robustness of the main result to the assumption of 100% LTV, interest-

only mortgages. Using two different approaches to parsimoniously incorporate 80%

LTV loans into the model, we find that the basic conclusion that sales prices are less

responsive than valuations continues to hold regardless of which assumption is made.

6.1 Discussion

To illustrate the mechanisms behind our main results, the top panel of Figure 8 plots

the tradeoff between sale hazard and capital gain for a seller of an existing home

with a loan amount of $200k prior to the rate shock when ρ = 1.24 The solid blue

line is simply the model generated sale hazard, which matches the data very well as

shown in Figure 4. The dotted blue line shows the seller’s indifference curve between

price and sale hazard implied by our model and parameter estimates. It is downward

sloping and convex, reflecting the fact that sellers like price and quicker sales, and

24We choose to plot the seller indifference curves for ρ = 1 because when list prices are sticky,
the indifference curve bends backward due to sellers not wanting to get stuck at a sub-optimal list
price.
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that seller utility over price is concave.25 The point of tangency between the solid

and dotted lines reflects the seller’s optimal choice.

Now consider the solid red line, which reflects the tradeoff following the rate

increase according to our model. The red line shifts in because buyer demand is

lower following the rate increase. The shift in is larger for high price levels because

the effect of rates on buyer demand is stronger for higher priced homes, as the interest

rate effectively multiplies the price in the owner’s utility function. The optimal point

on the tradeoff curve shifts to the southwest—this seller chooses both a smaller capital

gain and a lower expected sale hazard following the rate shock. So we can see that

both prices and sale hazards adjust in response to the interest rate change.

These tradeoff curves focus on the incentives for a particular type of seller. Figure

7 plots the list price policy functions for existing homes for sellers with different

purchase prices. For most of the purchase price distribution, the optimal list price

is not particularly sensitive to the interest rate level. The main effect of increasing

interest rates on the list price policy function is that owners who purchased at very

high prices can no longer list at a very high price and still expect to find a buyer with

positively probability. They therefore have to reduce their list price significantly.

Most owners have lower purchase prices, as is shown by the grey distribution in the

figure, and do not change their list prices much in response to the interest rate hike,

which explains why on average, the price response is modest.26

The concavity of U(w) appears to be important for the quantitative magnitude

of this result. The bottom panel of Figure 8 shows that at the optimal list price , the

25The seller indifference curves are rather sharply L-shaped because the sellers face a dynamic
problem. Marginal tradeoffs around the optimal price and sale hazard are generally not attractive
because one could wait a period to try to get the optimal price and sale hazard.

26This is partly a function of the initial conditions in our simulation. However, in general, it is
reasonable to think in most markets that most sellers will have loan amounts below prevailing prices
due to inflation and amortization. Even more so in supply inelastic areas where income growth
would also contribute to price growth.
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terminal wealth utility function is locally very concave. As a result, when interest

rates increase, the marginal disutility of dropping price increases relatively quickly,

which causes sellers to adjust more on the sale hazard margin. At the same time,

the marginal utility of raising price decreases relatively quickly, and so sellers will not

raise their price a lot in response to an interest rate decrease. Indeed, we have found

that the list price policy function, and thus average house prices, are more sensitive

to interest rates when the risk aversion parameter, σ, is lower.

Finally, we note that Figure 7 also helps to illustrate why average prices of new

construction sellers are more rate sensitive than average prices of existing homes.

Since our construction cost paramaters imply that the average construction cost plus

land cost is higher than the average purchase price, the density of new construction

sellers is higher at the region of the list price policy function that is more sensitive to

interest rates.

7 Conclusion

We estimate a dynamic equilibrium search model of the housing market with mortgage

contracts to study the effects of interest rates on housing market dynamics. Our model

structure and parameters are informed by detailed micro data on home listings, and

our model can be solved both in and out of steady state despite the rich heterogeneity

that arises in the equilibrium of our model. Our main finding is that due to search

frictions, the rate elasticity of house prices is modest but it understates the rate

elasticity of housing valuations by a factor of two. Our second main finding is that

search frictions can explain why home sales and construction are much more rate

elastic than house prices.

Taken together, our results suggest that monetary policy—to the extent that it can
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influence mortgage rates—has stronger effects on housing values than is commonly

assumed. The effect on housing values clears through both prices and liquidity of

homes in our model. If financial stability depends not just on average prices of

transacted homes but on the joint distribution of prices and probability of sale, then an

implication of our model for policymakers is that the tradeoff when lowering interest

rates between short-run gains in real economic activity and risks to financial stability

is stronger than some basic empirical housing relationships would seem to suggest.27
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Figure 1: Intuition for Effect of Interest Rate Change on Price and Sale Hazard

The right-most curves illustrate a hypothetical tradeoff curve between list price and
sale hazard, and the optimal choice for a single seller given the seller’s indifference
curve over price and sale hazard. The left-most curves reflect the tradeoff curve and
the indifference curve following an interest rate increase. The effect of an interest
rate increase is to reduce buyer valuations at each list price, thus pushing the tradeoff
curve downwards, causing the same seller to choose a new combination of optimal
list price/sale hazard. The figure shows that the new optimal choice of the seller
generally results in both a reduction in list price and sale probability.

43



Figure 2: Empirical Sale Hazards
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(b) IV Estimates

The left figure shows the share of homes on the market at various list price levels in a
given month that sell in that month. The data are for homes with observable house
quality that is close to the median observable house quality in 2001. For the same
type of home, the right figure shows the estimate of sale hazard by list price using
the IV regression described in the main text. The dotted lines denote a 95 percent
confidence interval.
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Figure 3: Empirical List Price Policy Function
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(b) IV Estimates

The left figure shows the average list price chosen by sellers with various levels of
purchase price–i.e. the price they initially paid for the home. The data are for homes
with observable house quality that is close to the median observable house quality in
2001. For the same type of home, the right figure shows the estimate of list price by
purchase price using the IV regression described in the main text. The dotted lines
denote a 95 percent confidence interval.
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Figure 4: Model Fit: Sale Hazards
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The x’s denote the average monthly sale hazard at each list price level that we compute
from the data using Equation 19. The solid line denotes the model predictions at our
estimated parameters. A sale hazard of zero means that the submarket is not active:
either no seller or no buyer would find it optimal to direct their search into that
submarket.
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Figure 5: Model Fit: List Price Policy Function
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The x’s denote the average list price at each loan amount level that we compute from
the data using Equation 20. The solid line denotes the model predictions at our
estimated parameters. The dotted line is a 45 degree line.
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Figure 6: Response to Interest Rate Increase
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This figure shows simulations from the estimated model. Initial conditions are set to
match the 2001 SanDiego market. The aggregate state remains constant until t=24,
when there is a 1 percentage point increase in the mortgage rate. The aggregate state
remains constant at the higher rate thereafter. The frictionless price is the price that
buyers would be willing to pay (i.e. makes their expected utility equal to k) if the
match rate between buyers and sellers in the economy was equal to 1. All prices are
log prices.
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Figure 7: List Price Policy Functions for Existing Homes by Interest Rate
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This graph shows the model implied optimal list price choice as a function of loan
amount before and after the 1 percentage point interest rate increase in the simulation
shown in Figure 6. The grey line shows the distribution of sellers on the market in
the period right before the interest rate shock in the simulation.
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Figure 8: Tradeoff Between Price and Sale Hazard (Existing Homes)
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The top graph shows the model implied optimal list price choice (“+”) for a seller of
an existing home with a loan amount of $200k before and after the 1 percentage point
interest rate increase in the simulation discussed in the text. The seller’s indifference
curves over price and sale hazard are shown with dotted lines.. The solid lines reflect
the tradeoff curve been price and sale hazard that any seller faces in each interest
rate regime. The bottom graph shows the same tradeoff curves in the top graph, in
addition to the sellers’ utility over price, U(p− $200k).
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Table 1: Effects of Interest Rates on Housing Variables
4-qtr % change in:

House Prices Sales Volume Months Supply New Listings Permits Permits
4-qtr chg in 30yr FRM -0.0052** -0.0835*** 0.1079*** 0.0843 -0.1176*** -0.1843***

(0.0026) (0.0137) (0.0369) (0.0457) (0.0131) (0.0515)
4-qtr chg in 10yr Treasury 0.0745*

(0.0385)
4-qtr chg in 2yr Treasury 0.0019

(0.0421)

Observations 158 106 106 51 175 175
*** p<0.01, ** p<0.05, * p<0.1

Changes are 4-quarter changes. Interest rates are in percentage points. Housing mar-
ket variables are in logs. House Prices are quality adjusted and come from Corelogic.
Sales volume and months supply comes from the National Association of Realtors.
Permits come from the Census Bureau. All variables reflection national averages or
totals. Newey west standard errors with lag length equal to five quarters in paren-
thesis.
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Table 2: Interaction with Housing Supply Elasticity
Metro Housing Supply Elasticity
Low Medium High

Dependent variable: 4-qtr % chg in house prices
4-qtr chg in 30yr FRM 0.0078*** 0.0067*** 0.0072***

(0.0010) (0.0006) (0.0006)
Observations 13746 13904 14062

Dependent variable: 4-qtr % chg in sales volume
4-qtr chg in 30yr FRM -0.0832*** -0.0483*** 0.0013

(0.0086) (0.0129) (0.0145)
Observations 5472 5317 5428

Depndent variable: 4-qtr % chg in permits
4-qtr chg in 30yr FRM -0.0905*** -0.0870*** -0.1118***

(0.0056) (0.0059) (0.0080)

Number CBSAs 87 88 89
*** p<0.01, ** p<0.05, * p<0.1

Changes are 4-quarter changes. Interest rates are in percentage points. Housing
market variables are in logs. Prices come from Corelogic. Sales volume and months
supply comes from the National Association of Realtors. Permits come from the
Census Bureau. All variables reflection national averages or totals. CBSA fixed
effects are included in each regression. Standard errors are clustered at the CBSA
level.
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Table 3: Parameter Estimates
Parameter Description Value

Estimated Parameters

γ exponent on matching function 0.6809
(0.0038)

µ1 mean of match quality draws, new homes 10.4748
(0.1801)

µ2 mean of match quality draws, old homes 9.5712
(0.1267)

σ1 s.d. of match quality draws 17.9248
(0.1303)

cb buyer search cost 1.0073
(0.0049)

cs seller search cost (owners) -0.2255
(0.0372)

σ coefficient of relative risk aversion 1.9233
(0.0296)

b scale parameter on terminal wealth 0.7058
(0.0041)

B scale parameter on terminal utility 1.0345
(0.0042)

µC mean of construction costs $212k
(6.7035)

σC s.d. of construction costs $72k
(2.3329)

cc seller search cost (builders) 0.0408
(0.0011)

Parameters Set Outside of Estimation

µη mean of startup cost shock 70.222
ση s.d. of startup cost shock 52.391
A scale parameter on matching function 0.50
λ rate of moving shocks 0.008
ρ probability of being able to change list price 0.37
β subjective discount factor (monthly) 0.9957
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Table 4: Model Fit - Builder Moments
Moment Model Data

Mean of new construction list prices $327k $327k
S.d. of new construction list prices $35k $35k

Table 5: Model Implied Elasticities
Response to 100 bp

rate increase
Avg sale price (existing homes) -5.00%

Frictionless WTP (existing homes) -11.50%
Permits (new constructions) -15.40%
Sale hazard (existing homes) -16.97%
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A Existence of equilibrium

Here, we prove the existence of an equilibrium in which the value functions and

policy functions depend only on p, r, and x, and do not depend on the distribution

of agents in the economy. We consider a computational loop represented by operator

T , which acts on V o and W s, which are vectors in RL×N×N and RL×N×N×L. The

operator T takes an initial value for V = (V o,W s) ∈ RL3×N4 , and computes new

values using equations (2)-(8). If T has a fixed point, then this proves the existence

of an equilibrium. Note that the owner/seller’s problem is separable from the builder’s

problem (i.e. equations (2)-(8) do not depend on the value functions of the builders),

so we can first prove the existence of an equilibrium in the owner’s problem, then

prove the existence of an equilibrium in the builder’s problem. The existence proof

for an equilibrium in the builder’s problem is similar so we omit it.

The proof will proceed in two steps. First, we show the existence of a closed,

bounded, and convex set V ⊂ RL3×N4 such that if V ∈ V then TV ∈ V . We then

show that T is continuous at all V ∈ V . T and V therefore satisfy the conditions of

Brouwer’s Fixed Point Theorem, and there exists a fixed point of T in V .

It is useful first to define a group of operators representing each individual step

within the computational loop. The first step is to compute the expected surplus

from buyer search, conditional on finding a seller. This is represented by the operator

E : RL3×N4 → RL×N given by:

EV (p, x) = Ex′,ε|x,h=2

[
max{0, V o(p, r, x′)− k + ε}

]
(21)

The second step is to calculate equilibrium market tightness using the buyer’s indif-

ference condition (13). This is represented by the operator Θ : RL3×N4 → RL×N ,
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defined as:

ΘV (p, x) = q−1
b

(
(1− β)k − u(y − rent) + cb

βEV (p, x)

)
(22)

Although q−1
b is not formally defined for arguments greater than 1, we allow Θ to

return 0 when the term inside q−1
b is greater than 1. This will ensure continuity of Θ

and ensure that sellers will not search in those submarkets.

The third step is to calculate the probability that a seller meets a buyer using

equation (8). This is represented by the operator K : RL3×N4 → RL×N :

KV (p, x) = qs(ΘV (p, x))Ex′,ε|x,h=2

[
V o(p, r, x′)− k + ε ≥ 0

]
(23)

The fourth step is to compute the new value of T s, using equation (7). This is

represented by the operator T s : RL3×N4 → RL2×N2 , defined as:

T sV (l, r, x, p) = u(y − rl)− cs + βEx′|x

[
KV (p, x)U(p− l) + . . .

. . .+ (1−KV (p, x))ρmax
p′

W s(l, r, x′, p′) + . . .

. . .+ (1−KV (p, x))(1− ρ)W s(l, r, x′, p)
]

(24)

The final step is to compute the new value of V o, using equation (5). This is repre-

sented by the operator T o : RL3×N4 → RL×N2 , defined as:

T oV (l, r, x) = u(y − rl) + βEx′|x

[
(1− λ)V o(l, r, x′) + . . .

. . .+ λ(1− α) max
p
W s(l, r, x′, p) + λαU(pc − l)

]
(25)

56



And the operator T : RL3×N4 → RL3×N4 is simply defined by:

TV = (T oV, T sV ) (26)

A.1 Proof of boundedness

The first step is to show the existence of a closed, bounded, and convex set V such

that if V ∈ V then TV ∈ V . Let us define:

W s = u(y − r̄p̄)− cs + βmin
{
u(y − r̄p̄)− cs

1− β , U(p− p̄)
}

(27)

W̄ s = u(y − rp)− cs + βmax
{
u(y − rp)− cs

1− β , U(p̄− p)
}

(28)

and

V o = u(y − r̄p̄) + λ(1− α)W s + λαU(pc − p̄)
1− β(1− λ) (29)

V̄ o =
u(y − rp) + λ(1− α)W̄ s + λαU(pc − p)

1− β(1− λ) (30)

where r̄ and p̄ are the highest possible interest rates and price levels, respectively, and

r and p are the lowest. Let V = [V o, V̄ o]L×N2 × [W s, W̄ s]L2×N2 . V is closed, bounded,

and convex. Since KV (p, x) ∈ [0, 1] for any p, x and any V , it is easy to show using

equation (24) that if V ∈ V then T sV (l, r, x, p) ∈ [W s, W̄ s] for any l, r, x, p. Similary,

we can use equation (25) to show that if V ∈ V , then T oV (l, r, x) ∈ [V o, V̄ o] for any

l, r, x. Therefore, if V ∈ V then TV ∈ V .
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A.2 Proof of continuity

The second condition of Brouwer’s Fixed Theorem is that T is continuous at each

V ∈ V . To show this, we simply need to show that the operators given in equations

(21)-(25) are continuous. As a reminder, the definition of continuity for a mapping

T : X → Y from normed vector space X to normed vector space Y is:

Definition 1. T : X → Y is continuous at x ∈ X if for all ρ > 0, there exists δ > 0

such that for any y ∈ X, ‖x− y‖ < δ implies ‖Tx− Ty‖ < ρ. If T is continuous at

all x ∈ X then we simply say T is continuous in X.

Let ‖·‖ be the sup-norm. We will simply demonstrate that the operator E is

continuous. The continuity of the rest of the operators follow from the continuity of

E . Given ρ > 0, we let δ = ρ/2. Let V, Ṽ ∈ V such that
∥∥∥V − Ṽ ∥∥∥ < δ. We write:

EV (p, x) =
∑
x′|x

πx′|x

{∫ ∞
k−V o(p,r,x′)

[ε− k + V o(p, r, x′)] g(ε)dε
}

(31)

and so:

EV − E Ṽ =
∑
x′|x

πx′|x

∫ k−min{V o,Ṽ o}

k−max{V o,Ṽ o}

[
ε− k + max{V o, Ṽ o}

]
g(ε)dε

+
∫ ∞
k−min{V o,Ṽ o}

[
V o − Ṽ o

]
g(ε)dε (32)
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Now note that:

∫ k−min{V o,Ṽ o}

k−max{V o,Ṽ o}

[
ε− k + max{V o, Ṽ o}

]
g(ε)dε

≤
∫ k−min{V o,Ṽ o}

k−max{V o,Ṽ o}

[
max{V o, Ṽ o} −min{V o, Ṽ o}

]
g(ε)dε

≤ δ
∫ k−min{V o,Ṽ o}

k−max{V o,Ṽ o}
g(ε)dε ≤ δ (33)

and: ∫ k−min{V o,Ṽ o}

k−max{V o,Ṽ o}

[
ε− k + max{V o, Ṽ o}

]
g(ε)dε ≥ 0 > −δ (34)

Further note that:

∫ ∞
k−min{V o,Ṽ o}

[
V o − Ṽ o

]
g(ε)dε ≤ δ

∫ ∞
k−min{V o,Ṽ o}

g(ε)dε ≤ δ (35)

and:

∫ ∞
k−min{V o,Ṽ o}

[
V o − Ṽ o

]
g(ε)dε ≥ −δ

∫ ∞
k−min{V o,Ṽ o}

g(ε)dε ≥ −δ (36)

Together, this implies that if
∥∥∥V − Ṽ ∥∥∥ < δ, then

∥∥∥EV − E Ṽ ∥∥∥ < 2δ = ρ, as desired.

B Micro Evidence for Rate Elasticity of Home Buyer

Demand

In this subsection, we use a novel microdataset to provide further, model-free evidence

that 1) mortgage rates affect homebuyer demand and 2) a shock to homebuyer demand

from a shock to the mortgage rate is partly cleared through the probability of sale.

Our dataset, provided by a private vendor called Optimal Blue, records applica-
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tions for mortgage rate locks at a daily frequency. Buyers who apply for rate locks

usually do so between the sale agreement date, which is when the buyer and seller

tentatively agree upon a price and other terms, and the sale closing date, which is

when the buyer pays the seller and takes ownership of the home. A mortgage rate

lock is a guarantee by a lender to a borrower that the borrower can obtain mortgage

financing at the locked in mortgage rate, regardless of what happens to mortgage rates

subsequently. A rate lock is usually valid for a specified number of days. Our dataset

covers the time period from 2013-2016. About 25 percent of originated purchase

mortgages over this time period appear in our dataset.

We estimate the following regression on our locks dataset:

log(NumLockst)− log(NumLockst−2) = α0 + α1(rt+L − rt+L−2) + εt (37)

where NumLockst is the total number of rate lock applications on day t and r is the

10-year treasury rate on day t, which we use as a proxy for the mortgage rate since

daily mortgage rate data are difficult to obtain. Table 6 presents the results. Two-day

changes in interest rates are strongly negatively associated with the two-day change

in the number of rate lock applications. A 10 basis point increase in the interest rate

is associated with a 8.3 percent drop in applications. Interestingly, the correlation

only holds when the changes are contemporaneous: columns 2-5 show that for L 6= 0,

the correlation is zero. This result strongly suggests that the response in applications

for L = 0 is due to movements in the interest rate, rather than some unobserved

factor.

Why do the number of applications drop (rise) when mortgage rates rise (drop) ?

There are a few possibilities. One, purchase agreements may be less frequent when

rates rise and some buyers may apply for rate locks on (or just after) the agreement
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date. Two, buyers may back out of purchase agreements when rates rise, possibly

because the buyer cannot obtain financing at the higher rate or no longer wants to

pay the negotiated price because the debt service burden is too high under the higher

rate. Third, buyers may be timing the date of their purchase agreements and/or rate

locks to coincide with low interest rates. In contrast, a supply response is not a likely

possibility. It is highly unlikely that sellers are adjusting their decision to list their

homes for sale, or that builders are choosing when to market new constructions, at

such a high, 2-day, frequency.

Bhutta and Ringo (2017) find support for the first two channels. Using the same

rate lock data merged with HMDA data, they find that following an interest rate

decrease due to an unexpected policy change at the Federal Housing Administration,

applications for rate locks that eventually led to closed purchase originations increased

almost immediately and remained elevated for some time. They provide further

evidence that the increase in originations was due to both fewer loan denials and

additional applications for rate locks. They find that average prices did not change

much following the policy change.

The high frequency evidence from the locks data strongly suggests that buyer

demand responds to changes in mortgage rates, and that this change in demand is

not just reflected in prices. Increases (decreases) in rates appear to decrease (increase)

both quantities and prices. A framework for measuring the effect of mortgage rates

on the housing market that is motivated by a frictionless model and only analyzes

house prices would miss this quantity response.
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C Discussion of 100% LTV, interest-only mort-

gage assumption

In this subsection, we discuss the motivation and likely implications of our assumption

of 100% LTV, interest-only mortgages for our main results.In our San Diego data, the

average LTV is 88 percent and there are sizable mass points in the LTV distribution

at 96.5 (the FHA maximum) and 100 percent. The modal LTV is 80 percent. How

would our main results change if we assumed 80 percent LTVs instead of 100% LTVs?

None of the mechanisms in our model that generate our key qualitative results

depend on the 100% LTV assumption. However, the quantitative results may change

if we were to introduce wealth and savings into the model to allow for 80% LTVs.

But it is not clear whether our main quantitative result – the difference between the

model-implied average house price and latent buyer valuation elasticity – would be

larger or smaller than in our baseline estimates.

With 80% LTVs, the elasticity of home buyer valuations should be lower than

what we find in our baseline estimates. Future consumption is not as sensitive to

current interest rates when only 80 percent of the purchase price needs to be financed

with a fixed-rate mortgage. However, we also expect that the average house price

elasticity would be lower than in our baseline estimates. Due to concavity of the

terminal wealth utility function, sellers with lower outstanding loan amounts change

their list price by less in response to an interest rate change than sellers with high loan

amounts. This result is illustrated in Figure 7. The intuition for the effect of having

interest-only loans is similar. Allowing for amortization would lower the outstanding

loan amounts of sellers, implying a lower price elasticity with respect to changes in

interest rates.

To support our intuition of the likely effects of introducing 80% LTVs, we conduct
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two model simulations using our estimated paramater values, but allowing for 80

percent LTVs. In the first simulation, we assume that the buyer finances her down-

payment from her lifetime income at a rate of 1− β, where β is the discount factor.

In the second simulation, we simply endow each buyer with exactly enough wealth to

make a 20 percent downpayment. In the first simulation, the results are very similar

to our main results shown in Table 5. The average sale price and frictionless price

elasiticies were both slightly lower than in our baseline. In the second simulation,

the average sale price elasticity falls below 2 while the frictionless price elasticity re-

mained at about 10. So in both simulations with 80% LTVs, we continue to find that

the average price elasticity significantly understates the elasticity of buyer willingness

to pay.

In summary, because we are not clearly biasing our main quantitative results in

a particular direction with our assumption on the mortgage contract and because

our assumption of 100% LTV is not too far from reality for the typical borrower, we

choose to take advantage of the computational savings and model parsimony that

100% LTV mortgages provide. The advantage of assuming a 100% LTV is that we

do not need to model wealth and savings for a downpayment. The advantage of

assuming away amortization is that we do not need to keep track of how long each

homeowner has lived in the house in the state space.

D Parameters Set Outside of Estimation

We first discuss calibration of the mean and variance of builder startup costs, µη, ση.

These two parameters affect the probability of building, but they do not have any

effect on the moments we use in estimation, which are list price choices and sale

hazards. To calibrate these two parameters, we match our model (post-estimation)
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to two additional moments related to the overall model probability of building, i.e.

EC [V 2(C, x) − η ≥ V 1(x)]. To get the empirical counterpart to the model implied

probability of building, we first collected an estimate of the stock of potential infill

parcels in San Diego, L, from the California Statewide Infill Study conducted by the

Institute of Urban and Regional development.28 Infill parcels are those in developed,

residential areas of San Diego that are economically underutilized (e.g. have a low

improvement-value-to-land-value ratio) or in some cases are vacant. These parcels

would not include undeveloped land in the periphery of San Diego. One can roughly

equate this estimate to the stock of depreciated homes in our model that have not yet

been developed by builders. To get the empirical counterpart to EC [V 2(C, x) − η ≥

V 1(x)] , we compute Permits/4L = 0.0103 (i.e. the monthly build rate). We obtain

data on monthly single-family construction permits for San Diego from the Census.

Since permits reflect all types of new construction, we divide permits in each year by

four to reflect an estimate from the Infill Study of the share of total construction in

San Diego that is infill construction.29

Since there are two parameters that govern the probability of building, µη, ση,

we need one additional building moment to separately identify the two parameters.

If rather than including a second building moment we instead assume values for

either µη or ση, then we found that our results are qualitatively unchanged, but the

elasticity of permits with respect to interest rates implied by our estimated model

becomes unrealistically large. The additional moment that we use is the probability

of building in response to a 1 percentage point increase in the mortgage rate over the

28The study and data are available here: http://communityinnovation.berkeley.edu/
reports/Future_of_Infill_Vol_2.pdf.
29The estimate of L from the infill study is for 2004. Since we fit our model to 2001 data, we

back out the stock of undeveloped land, Lt, according to Lt = Lt−1 − P ermitst

4 + λαH where λα as
defined above is the depreciation rate, H is an estimate of the size of the housing stock in SanDiego
from the 2000 census, and Permits is total building permits in San Diego from the census.
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2001 mortgage rate. We apply the elasticity estimate from Table 1 to determine the

probability of building in the higher interest rate regime, which gives us a monthly

build rate of 0.0088. The model counterpart is simply EC [V 2(C, x′) − η ≥ V 1(x′)]

where x′ is the state vector reflecting the 1 percentage point increase in the mortgage

rate.

The permit elasticity estimate from Table 1 relies on time series interest rate

variation, and so it is likely biased downward due to endogeneity of interest rate

changes in the data. All of the moments that we use in estimation are based on

cross-sectional data. However, our only main result that is sensitive to µη, ση is

the simulated elasticity of permits with respect to a change in interest rates.30 Our

goal in modeling home construction is to show that in a rational model with search

frictions, home construction can be more rate elastic than house prices, and more in

line with the rate elasticity of buyer valuations. We deliver this result with reasonable,

calibrated builder parameters.

We set λ, the probability of a moving shock, equal to 0.008 to reflect that moving

occurs once every 10 years on average, in line with estimates from the American

Housing Survey. We set α, the probability of depreciation conditional on moving

shock, equal to 0.05. We set φ = 1
6 so that the average construction time from

start to completion is 6 months, to match the average time-to-build reported by the

Census. We set monthly rent and monthly income income equal to $1383 and $4591,

respectively, based on San Diego income and rent data from Zillow and BEA data.

We set the monthly interest rate equal to .00581 to reflect the average monthly 30

year fixed rate mortgage rate in 2001 from the Freddie Mac survey. We calibrate

ρ = 0.37 using an auxiliary dataset on San Diego home listings from 2008-2013 from

30Because of our model assumptions, particularly that of buyer free entry, the optimal behavior
of buyers and sellers of existing homes, who determine our main results, are not sensitive to the
decisions of builders.
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Altos Research. In these data, for all homes that are on the market for at least one

month, we find that 37 percent of the time, the average list price in a particular month

is different from the average list price in the previous month. We set pc, the price of

undeveloped land, equal to $70,500 based on simple hedonic regression using our main

dataset that we describe Appendix C. In practice, our estimate of pchas little effect

on our results because we estimate µC and these two parameters enter additively in

the builders’ terminal utility function. Finally we set the monthly discount factor to

β = 0.951/12 .

To calibrate agents expectations on future rent, income, and interest rate changes,

we use monthly, national rental inflation data from the BLS (1983-2016); monthly,

national average private, nonfarm hourly wage data from the BLS (2006-2016); and

monthly mortgage rates from the Freddie Mac Survey (1983-2016), respectively. We

assume that at a monthly frequency, agents expect that percentage changes in rents,

incomes, and rates are uncorrelated. This assumption is roughly consistent with the

data: the correlation between monthly changes in rates and rents is -0.02, monthly

changes in rents and changes in wages is 0.1, and monthly changes in rates and changes

in wages is 0.03. We set the variances on the rent, income, and rate processes to match

the variance of monthly changes observed for each respective series in the data.

E Construction of Empirical Moments

First, we describe how we define the two home types in our model–existing and new

homes–in our data. In the data, we summarize the multiple dimensions of house

quality into a single variable by running a hedonic regression of log initial list price

on observable house characteristics, including a dummy variable for new construction,

zip code fixed effects, and quarter-by-year fixed effects. We use San Diego listings
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data from 2001-2003 to estimate this regression. The predicted value from this re-

gression, net of the quarter-by-year fixed effects and the new construction dummy, is

our definition of house quality, q. We define an existing home in our model as a home

with the median quality among homes listed in 2001. We define a new home as the

quality of an existing home plus the coefficient on the new construction dummy from

the hedonic regression, which is about 3 percent. We define pc, the price of undevel-

oped land, as the median quality among homes listed in 2001, less the contribution

to quality of house characteristics (e.g. sqft, number of bathrooms) but inclusive of

the contribution of zip code fixed effects and land.

Our first goal is to estimate ∂κ(p, h, x)/∂p. To this end, we estimate the following

regression using our sample of listings between 2001-2003:

sellit = δy(t) + α1qi + α2q
2
i + α3q

3
i + α4(pi − qi)δy(t) + α5(pi − qi)qi + α6(pi − qi)2qi + . . .

. . .+ α7(pi − qi)2δy(t) + α8(pi − qi)3qi + α9(pi − qi)3δy(t) + εit (38)

where sellit is a dummy variable equal to 1 if listing i sells in month t. δy(t) is a set

of listing year fixed effects meant to proxy for the aggregate state, x, meaning that,

for example, the coefficient on pi − qi is allowed to vary with the aggregate state. p

is the list price. To see the source of endogeneity, note that p − q will be positively

correlated with unobserved house quality, leading to a correlation with the error term.

We instrument for the endogenous p− q terms using log(Pt)− log(Pt0) where Pt is

the Corelogic house price index for San Diego in the year/month of listing t and Pt0 is

the house price index for San Diego for the year/month in which the seller initially

purchased the home. In practice, we use a sixth order polynomial of the instrument

and estimate the model using 2SLS. As in Guren (2018), the first stage is strongly
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significant: more house price appreciation since purchase results in a lower list price

choice on average. We group list prices into $10,000 bins and compute the average

sale hazard associated with each bin according to the estimated equation (38).

Our second goal is to estimate ∂ps(l, r, x)/∂l . To this end, we estimate the

following regression using our sample of listings between 2001-2003:

pit = δy(t) + α1qi + α2q
2
i + α3q

3
i + α4ri + α5li + ...

. . .+ α6liqi + α7l
2
i + α8l

2
i qi + α9l

3
i + α10l

3
i qi + εit (39)

where pitis the seller’s list price choice. l is the seller’s outstanding loan amount,

equal to the purchase price in our model. r is the sellers outstanding mortgage rate,

equal to the mortgage rate at the time of purchase in our model. The other variables

are defined as above. The source of endogeneity is the same as described above.

The purchase price will be positively correlated with unobserved house quality, and

unobserved quality enters the error term because it has a direct effect on the list price.

Our estimates of α5−α10 will be biased upward if we estimate (39) by OLS. Therefore,

we instrument for l using log(Pt0)− log(Pt′0) where Pt0 is the house price index for San

Diego for the year/month in which the seller initially purchased the home and Pt′0 is

the house price index for San Diego for the year/month two transactions prior to

listing. In practice, we use a sixth order polynomial of the instrument and estimate

the model using 2SLS. We group purchase prices into $10,000 bins and compute the

average list price associated with each bin according to the estimated equation (39).

Finally, to get the mean and standard deviation of list prices for new construction

homes, we first run the following regression on the sample of new construction listings:
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pit = δy(t) + α1qi + α2q
2
i + α3q

3
i + εit (40)

We estimate this equation using weighted least squares to account for heteroskedas-

ticity. We get the standard deviation of list prices from the RMSE of this regression.

Thus, we are partialing out observable quality differences in new construction homes

before computing the standard deviation.31 We get the mean list price by evaluating

equation (40) at the q associated with an existing home.

E.1 Weighting Matrix Used for Estimation of the Model

We use a diagonal weighting matrix. For the sale hazard moments, we weight each

list price bin by the inverse of the square of the standard error of the average sale

hazard as implied by our estimates of equation (38). For the list price moments for

existing homes, we weight each purchase price bin by the inverse of the square of the

standard error of the average list price as implied by our estimates of equation (39).

For purchase price bins that are associated with list price choices that result in a zero

sale hazard according to equation (39), we set the weight equal to zero. In practice,

these purchase price bins already receive low weight because they are associated with

high standard errors, but we further lower the weight to zero because no seller would

ever choose a list price that is associated with a zero sale hazard in our model. We

give equal weight to the mean and standard deviation of list price choices for new

construction. We set the scale on the weights so that the sum of the weights for these

two moments is equal to the sum of all of the weights associated with the moments

31We cannot account for unobserved quality in new construction homes because there is no price
appreciation since purchase to form an instrument for new construction. However, we expect that
unobserved quality for new construction homes is much less of a concern than for existing homes. In
practice, differences in unobserved quality comes from renovations/maintenance/depreciation, which
would not typically be applicable for new construction homes.
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for list price choices for existing homes. Our results are robust to other choices of

weights for these two moments.

F Details on Solving the Model

To solve the model, we iterate on the following loop until convergence. Given an

initial guess of the value functions,

1. Compute θ (p, h) using (13)

2. Compute κ (p, h) using (8)

3. Compute V b using (4)

4. Compute V s (l, r) and W s(l, r, p) using (6,7)

5. Compute V o (l, r) using (5)

6. Compute V 3(C) and W 3(C, p) using (11,12)

7. Compute V 2 using (10)

8. Compute V 1 using (9)

In implementing this loop, we set loan, price, and construction cost grids to each run

from $10k to $600k in $10k increments. We solve the model for four different interest

rate levels: the average 2001 interest rate, a one standard deviation positive shock to

the interest rate, a one standard deviation negative shock to the interest rate, and

the average prevailing interest rate among sellers who enter the market in 2001; for

two different rent levels: the average 2001 rent and a one standard deviation positive

shock to the rent; and for two different income levels: average 2001 income and a one

standard deviation positive shock to this income.
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G Calculation of Frictionless Price

To compute the frictionless price, we re-solve the model equilibrium assuming that

the probability of a match for a buyer or seller is always one, regardless of the market

tightness. We still assume that the buyer receives an idiosyncratic preference shock

ε and may reject the purchase if ε is too low. That is, for each type of housing h, we

find the price pwtph (x) that solves the following:

k(x) = u(y − rent)− cb + βEx′,ε|x

[
k + max

{
0, V o(pwtph , r, x′) + ε− k

}]
(41)

where

V o(l, r, x) = u(y − rl) + βEx′|x

[
(1− λ)V o(l, r, x′) + . . .

. . .+ λ(1− α)V s(l, r, x′) + λαU(pc − l)
]

(42)

and

V s(l, r, x) = u(y − rl)− cs + βEx′|x

[
κ(h, x)U(pwtph − l) + . . .

. . .+ (1− κ(h, x))V s(l, r, x′)] (43)

and

κ(h, x) = Ex′,ε|x,h

[
V o(pwtph , r, x′) + ε− k(x) ≥ 0

]
. (44)

In words, pwtp(x) is the price that the buyer can get without any search frictions
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given the aggregate state x. Thus, pwtp can be interpreted as a willingness to pay for

housing. Since the calculation in (41) depends on the owners value function, V o, we

re-solve V o using equations (42)-(44). (42) has the same structure as in the baseline

model. (43) says that all sellers post the frictionless price upon mismatch. (44) says

that the probability of a seller meeting a buyer is one, but the buyer may reject the

match if ε is not high enough. The frictionless price that we compute is an equilibrium

price in a model where the probability of a match is always equal to one.

H Additional Model Simulation Results

We simulate the housing market response to an exogenous and unexpected full per-

centage point decrease in the mortgage rate. Figure A.2 shows the results. The

results are largely symmetric to the results shown in Figure 6. Finally, we repeat our

baseline simulations shown in Figure 6 for the case where list prices are not sticky

(i.e. ρ = 1). Figure A.1 shows the results. They are similar to the baseline results.
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Figure A.1: Response to Interest Rate Increase, No Sticky List Prices
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This graph shows simulations from the estimated model when list prices are not sticky
(ρ = 1). Initial conditions are set to match the 2001 SanDiego market. The aggregate
state remains constant until t=24, when there is a 1 percentage point increase in the
mortgage rate. The aggregate state remains constant at the higher rate thereafter.
The frictionless price is defined as the price that would leave buyers indifferent over
being in a market where the probability of matching with a seller is one, and being
in the market described in our baseline model where the probability of matching is
generally less than one in equilibrium. All prices are log prices.
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Figure A.2: Response to Interest Rate Decrease
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This graph shows simulations from the estimated model. Initial conditions are set to
match the 2001 SanDiego market. The aggregate state remains constant until t=24,
when there is a 1 percentage point decrease in the mortgage rate. The aggregate state
remains constant at the higher rate thereafter. The frictionless price is defined as the
price that would leave buyers indifferent over being in a market where the probability
of matching with a seller is one, and being in the market described in our baseline
model where the probability of matching is generally less than one in equilibrium.
All prices are log prices.

Table 6: Effect of Interest Rates in Mortgage Rate Locks Data
2-day % change in # mortgage locks

L=0 L=1 L=2 L=3 L=-5

rt+L - rt+L−2 -0.8281*** -0.0290 -0.1550 0.1550 -0.0206
(0.2049) (0.2643) (0.2413) (0.2624) (0.2660)

Observations 742 741 740 739 737
Shows regressions of 2-day change in the log(# mortgage rate lock applications) on
2-day changes in the 10-year treasury rate (r). Mortgage rate lock applications data
come from Optimal Blue. The sample period is 2013-2016.
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